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My Background

• Undergraduate degree in cognitive psychology
• Developed statistical software at MD Anderson Cancer Centre
• Designed consumer software at Compaq
• Usability then program manager then researcher at Microsoft

• Windows team initially then Microsoft Research
• Master’s degree in meeting annotation systems
• PhD in electroencephalography data analytics
• Since worked in VR, geospatial computing, speech and 

dialogue systems



A quick example!

From https://medium.com/tensorflow/getting-alexa-to-respond-to-sign-language-using-your-webcam-and-
tensorflow-js-735ccc1e6d3f

https://medium.com/tensorflow/getting-alexa-to-respond-to-sign-language-using-your-webcam-and-tensorflow-js-735ccc1e6d3f


Chihuahua or muffin?

From https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-
cbda4d6b425d

https://medium.freecodecamp.org/chihuahua-or-muffin-my-search-for-the-best-computer-vision-api-cbda4d6b425d


Definitions

• AI – 1956 Dartmouth workshop definition “Thinking Machines”
• Three primary goals of AI

• Systems that work like the brain
• Systems that just work, without caring how
• Systems that use the brain as an abstract concept

• Third goal is the most common in modern systems and what 
I’ll spend most time on today



History – Cognitive Science
• Field originated with great 

optimism
• Hebb (1949), Turing 

(1936,1950)
• "Cells that fire together 

wire together.“ is still 
useful!

• Complexity rapidly 
became overwhelming, 
though



History – Expert Systems



History – Neurally inspired

• Overall, AI has drawn more from cognitive science than 
the reverse

• Neural network AI is only loosely related to biological
• Many concepts are useful, though

• Attention
• Episodic memory
• Working memory
• Reinforcement learning

For a nice review, see https://deepmind.com/documents/113/Neuron.pdf

https://deepmind.com/documents/113/Neuron.pdf


History – Recent Advances

• Starting in 2009, and accelerating through the next 10 
years, neural networks and “Deep Learning” have taken off

• Huge theoretical advances have been made, of course, 
but the main factor is computational

• Gaming, and powerful parallel computation engines in 
graphics cards, are at the root of this

• To understand why, let’s look at neural network algorithms



02
Neural Network basics and architectures



Basic Algorithms

• Remember Hebbian network –
neurons that fire together wire 
together – associative learning

• Consider the yellow nodes as 
inputs, the green nodes as a 
hidden layer, and the orange as 
outputs



Gradient descent



Backpropagation

• Errors are taken from the 
output node and 
propagated backwards

• All hidden layers and 
weights are updated in turn

• Ignore the math on this for 
now, but think about how 
iterations of this could train 
a network



Backpropagation

• Each node and edge in the neural network graph has a 
weight, each weight is updated with each training image



Backpropagation



CNN – convolutional NN

• A small filter is applied over each region in between layers

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
Also http://playground.tensorflow.org/

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
http://playground.tensorflow.org/


What do the hidden layers mean?
• Not always clear WHY a 

neural net makes a 
decision

• Research is underway to 
improve “attribution”

Great detailed explanation of hidden layers https://distill.pub/2018/building-blocks/

https://distill.pub/2018/building-blocks/


Recurrent Neural Networks

Chris Olah has a nice blog entry on this http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Generative Adversarial Networks

Good intro GAN article https://skymind.ai/wiki/generative-adversarial-network-gan

https://skymind.ai/wiki/generative-adversarial-network-gan


Nvidia Style Generator

Source https://www.youtube.com/watch?v=kSLJriaOumA

https://www.youtube.com/watch?v=kSLJriaOumA
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All about data



Data Basics

• To train a network you data, sometimes lots of it!
• That data needs to be labelled (also called “annotated”)
• How much data depends on:

• Complexity of the discrimination you are asking
• How much similar data is available (transfer learning)
• How much the data can be programmatically tweaked 

to make new data (data augmentation)



Hot dog, not hot dog

• Simple binary classification is the easiest

A fun example app: https://medium.com/@timanglade/how-hbos-silicon-valley-built-not-hotdog-with-
mobile-tensorflow-keras-react-native-ef03260747f3

https://medium.com/@timanglade/how-hbos-silicon-valley-built-not-hotdog-with-mobile-tensorflow-keras-react-native-ef03260747f3


Multi-class discrimination

• Many classifiers are NOT neural network based

Details: https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/one-vs-all

hidden

hidden logits

one-vs-all
(sigmoid)

apples: yes/no?

bear: yes/no?

candy: yes/no?

dog: yes/no?

egg: yes/no?

https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/one-vs-all


Some example problems

• Dogs vs. cats
• Binary classification
• Complex shapes, but learnable
• 256x256 pixel images, 1000 from each category
• Final accuracy ~90%

• ImageNet
• 14 million images, 20,000 categories
• Human error ~5%, best machine error 6.8%

Good article http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/


Crowdsourced labels

• Labelling data can be expensive
• Applications that generate labels are one way
• Crowdsourced annotators are another

Math-heavy, but a good review of crowdsourcing https://arxiv.org/pdf/1803.04223.pdf

https://arxiv.org/pdf/1803.04223.pdf
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Futures and Ethics



Moore’s law

Human brain FLOPS https://aiimpacts.org/brain-performance-in-flops/

https://aiimpacts.org/brain-performance-in-flops/


Moore’s law – is it slowing?



Parallel computation

Blog article on Nvidia for deep learning https://blogs.nvidia.com/blog/2018/10/12/deep-learning-turing-graphics/

https://blogs.nvidia.com/blog/2018/10/12/deep-learning-turing-graphics/


Cloud computing and TPUs

Google’s TPU page https://cloud.google.com/tpu/ - a petaflop is one thousand million million operations per 
second (ten to the fifteenth power), teraflop is ten to the twelfth 

https://cloud.google.com/tpu/


Pop Culture Future of AI



Realistic Future of AI



AI and jobs

Source https://www.consultancy.uk/news/13770/ai-may-only-replace-19-percent-of-the-jobs-it-takes

https://www.consultancy.uk/news/13770/ai-may-only-replace-19-percent-of-the-jobs-it-takes


AI impacts – Deep Fakes

Source https://www.youtube.com/watch?v=dDgPFk2u0E0 (fifth estate report) 

https://www.youtube.com/watch?v=dDgPFk2u0E0


AI impacts – language models

Source https://blog.openai.com/better-language-models/

https://blog.openai.com/better-language-models/


Ethics and personhood

Source http://nautil.us/blog/heres-how-well-know-an-ai-is-conscious

The 21st century is in dire need of a Turing test for consciousness.

You don’t think you’re a zombie, 
but that’s just what a zombie 
would say. – David Chalmers

http://nautil.us/blog/heres-how-well-know-an-ai-is-conscious
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Fun examples!



Tensorflow playground

Source http://playground.tensorflow.org

http://playground.tensorflow.org/


Gen Studio

Source https://gen.studio/ architectural details at https://www.ailab.microsoft.com/experiments/gen-studio

https://gen.studio/
https://www.ailab.microsoft.com/experiments/gen-studio


iNaturalist

See https://www.inaturalist.org/

https://www.inaturalist.org/


Thank You
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http://qvirt.com/aitalk.html
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